

Fig. 10.-Rotatory dispersion curve of the L-histidine-copper complex resolved into a simple Cotton effect and a Cotton effect similar to those of the cobalt, nickel, and zinc complexes.
the many-electron model to this chromophoric electron. Looking at complex I (imidazole plane), it would be reasonable to take the most polarizable z-direction in the direction of charge transfer. The y-direction would be in the imidazole plane and the x-direction would be perpendicular to that plane. All of the groups lie in

or very near a plane except the carboxylate anion which is clearly the principal perturbation of the "chromophoric ellipsoid." As it is a negative group, the product $A x y z$ would be positive in this direction, that is, the static charge effect is assumed to be dominant, and as $x y z$ is negative, A must be negative, i.e., a negative Cotton effect might be expected. Figure 10 shows that the curve for the L-histidinocopper(II) can be resolved into a curve similar to those of the other transition metals and a negative Cotton effect curve.

Acknowledgment.-The authors express appreciation to the National Science Foundation under Grant GP415 for financial support of this research and to Dr. D. J. Caldwell for helpful discussions on theoretical aspects of optical rotation.

Electron Paramagnetic Resonance Studies of the Electronic Structures of Bis(maleonitriledithiolato) copper(II), -nickel(III), -cobalt(II), and -rhodium(II) Complexes

By A. H. Makr, N. Edelstein, A. Davison, and R. H. Holm ${ }^{1}$
Received June 1, 1964

Abstract

The electron paramagnetic resonance spectra of the low spin ($S=1 / 2$) planar complexes $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}\left(\mathrm{CN}^{2}\right)_{4}\right]^{-2}$, $\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2},\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$, and $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-}$have been obtained at room temperature in magnetically dilute single crystals of diamagnetic $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ and ($n-\mathrm{Bu}_{4} \mathrm{~N}$) $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$, respectively, whose crystal structures are known. It was found that the principal axes of the tensors g and A lie along the symmetry axes of the complex in the crystal, within experimental error. Calculations of g and A are inade for several possible ground-state configurations of the metal ion in the complex and are compared with the experimental spin-Hamiltonian. The following probable ground-state hole configurations are deduced: $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2},\left|\epsilon>; \quad\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2},\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{C} .)_{4}\right)^{-},\left|\epsilon^{2} y>; \quad\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right],\right| \epsilon^{2} 0>\left(\epsilon \equiv \mathrm{d}_{x y}, y \equiv \mathrm{~d}_{2 z}\right.\right.$, $0 \equiv \mathrm{~d}_{3 z^{2}-r^{2}}$, where the z-axis is perpendicular to the molecular plane and the y-axis bisects each ligand). Configurational excitation energies estimated from the spin-Haniltonians are compared with the optical spectra, and assignments of certain observed electronic transitions are made.

Introduction

Paramagnetic resonance spectroscopy has been extensively utilized in the study of planar chelates of $\mathrm{Cu}(\mathrm{II})$, which have a d^{9}-electron configuration. ${ }^{2-9}$

[^0]We have recently reported on the synthesis and characterization of a series of planar four-coordinate complexes of transition metal ions of the $3 \mathrm{~d}, 4 \mathrm{~d}$, and 5 d groups which readily undergo oxidation-reduction reactions. ${ }^{10}$ These complexes are remarkable in that the geometry of the complex is unaffected by oxidationreduction reactions, and one can obtain planar complexes containing the transition metal ions in a series of formal oxidation states. The object of this paper is to report on the results of paramagnetic resonance

[^1]measurements of magnetically dilute single crystals containing certain of the paramagnetic complexes described earlier ${ }^{10,11}$ as solutes. The compounds in-

I
vestigated here are the paramagnetic tetra- n-butylammonium salts of the planar complexes I in which $\mathrm{M}=\mathrm{Cu}, \mathrm{Co}, \mathrm{Rh}, z=-2$, and $\mathrm{M}=\mathrm{Ni}, z=-1$. The diamagnetic host crystals employed in this investigation were $\mathrm{M}=\mathrm{Ni}, z=-2$, for the paramagnetic $z=-2$ complexes, and $\mathrm{M}=\mathrm{Cu}, z=-1$ for the paramagnetic $z=-1$ complex.

Preliminary paramagnetic resonance data have been reported for several complexes ${ }^{10,11}$ but up to now these data have been obtained either in liquid solutions, frozen glasses, polycrystalline solids, or magnetically dilute single crystals without the benefit of a crystal structure. Although data obtained from disoriented samples may be used to obtain the spin-Hamiltonian ${ }^{12}$ parameters of the complex, they suffer from the very important defect that the magnetic principal axis system cannot be related to a molecule-fixed coordinate system by purely experimental means. The usefulness of the spin-Hamiltonian for the assignment of the electronic configurations of complexes is largely lost without this information.

Complete structure determinations of ($n-\mathrm{Bu}_{4} \mathrm{~N}$)$\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{5}\right]$ and $\left(n-\mathrm{Bu}_{4} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ (isomorphous with the corresponding nickel complex ${ }^{13}$) have recently been completed by Forrester, et al., ${ }^{14}$ and reveal that the ligands form a planar array about the central metal atoni.

From the crystallographic structures of the $z=-2$ and $z=-1$ host complexes, we obtain the orientation of the principal axis systems of A, the hyperfine tensor, and \mathbf{g}, the g-value tensor in a molecule-fixed coordinate system. Conclusions are then drawn about the probable d-electron ground-state configurations of the central metal ions by comparison of the observed A and \mathbf{g} with those calculated from various configurations. Estimates of configurational excitation energies are obtained and discussed.

Experimental

Single crystals containing 1 to 5 mole $\%$ of the paramagnetic complex were grown by solvent evaporation from solutions of the $z=-1$ crystals in dichloromethane-chloroform, and from solutions of the $z=-2$ crystals in acetone-2-butanol. Faces of the doped $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ and $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ erystals were identified by optical goniometry.

Crystals were mounted on a polystyrene wedge with an identified face attached with Apiezon N to one of the surfaces. The wedge was attached to a polystyrene post with an indicator which could be rotated against a fixed angular scale. By means of this arrangement, the crystals were each rotated inside the microwave cavity of the paramagnetic resonance spectrometer through 180°,

[^2]measurements being made either at 20 or 15° intervals. Crystals were remounted, and rotations made about two axes orthogonal to the first. The rotation axis was perpendicular to the magnetic field.

The paramagnetic resonance measurements were made on a conventional spectrometer operating at about $9.8 \mathrm{Gc} . / \mathrm{sec}$. emploving $30 \mathrm{kc} . / \mathrm{sec}$. magnetic field modulation. The klystron frequency was measured with a transfer oscillator and frequency counter for each crystal orientation. The magnetic field was measured by means of a proton gaussmeter monitored by the same frequency counter.

Analysis of Data and Experimental Results

The observed g-values and hyperfine splittings for each rotation were averaged by a least-squares analysis and the resulting parameters were treated according to the procedure of Schonland. ${ }^{15}$ We have assumed that \mathbf{g} and \mathbf{A} have the same principal axis system (discussed below) and write the spin-Hamiltonian ${ }^{12}$ as

$$
\begin{aligned}
\mathfrak{H}= & \beta_{0} \vec{S} g \vec{H}+\overrightarrow{I A} \vec{S} \\
= & \beta_{0}\left(g_{x x} S_{x} H_{x}+g_{y y} S_{y} H_{y}+g_{z z} S_{z} H_{z}\right)+A_{x x} I_{x} S_{x}+ \\
& A_{y y} I_{y} S_{y}+A_{22} I_{2} S_{z}
\end{aligned}
$$

where β_{0} is the Bohr magneton, \vec{H} is the magnetic field, and \vec{S} and \vec{I} are the electron and nuclear spin operators, respectively. We obtain the principal values of $\mathbf{g}\left(g_{x x}, g_{v y}, g_{z z}\right)$ and $\mathbf{A}\left(A_{x x}, A_{v y}, A_{z z}\right)$ from the analysis of the data. The analysis also gives the direction angles of the magnetic principal axis system in relation to the coordinate system defined by the three orthogonal crystal rotation axes.

We now define a right-handed molecule-fixed axis system as

The direction angles of x, y, and z were calculated from the crystallographic data in the crystal rotation axis system and compared with the direction angles of the principal axes of \mathbf{g} and \mathbf{A}. For each crystal analyzed, agreement was found to be, on the average, within $2-3^{\circ}$, which indicates that the magnetic axis systems in the crystal are coincident with the symmetry axes of the complex ion, within experimental error. This agreement also shows the assumption that g and A have the same principal axis system is correct, within experimental error.

Table I lists the crystals measured, the principal \mathbf{g} and A values, and the calculated and experimental direction angles. $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ has one molecule per unit cell, while $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ has eight molecules per unit cell, but only two magnetically unequivalent sites. ${ }^{14}$ In the case of $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-}$, A for ${ }^{61} \mathrm{Ni}$ was obtained from the glass spectrum of an isotopically enriched sample. The most significant differences between the principal values of \mathbf{g} reported here and previously reported values from glass spectra occur in the case of the $g_{x x}$ for $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ - (found to be 2.140 in a CHCl_{3}-dimethylformamide glass ${ }^{10}$). There is also a significant difference in the maximum principal g-value reported by Billig, et al., ${ }^{11}$ for polycrystalline $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ (2.35) and our

[^3]Table I

Crystal	$\begin{gathered} \text { Molecu- } \\ \text { 1at } \\ \text { axis } \end{gathered}$	Calculated direction angles, deg.			$2 \mathrm{~g}^{\text {a }}$			Ex	tal				
					A, cm. ${ }^{-1}$								
					Direction angles, deg.	$\times 10^{3}$	Wirection angles, deg.						
($\mathrm{Bu}_{4} \mathrm{~N}$) $\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{C} . \mathrm{N})_{4}{ }^{\text {b }}$	x	78.2	34.3	58.2		74.1	34.7	60.0	$1.5 \pm 0.2^{\circ}$				
diluted in	y	76.2	55.2	38.1		2.042	76.9	55. 9	37.2	0.29 ± 01^{c}			
$\left(\mathrm{Bu}_{4-}\right)^{\text {) }} \mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}$	2	18.2	88.0	71.8		1.998	20.8	83.9	70.2	$<0.2^{c}$. ${ }^{\text {d }}$			
$\left.{ }^{(} \mathrm{Bu}_{4} \mathrm{~N}\right)_{2} \mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}$	x	22.9	-67.2	-89.1	2.798 ± 0.003	23.5	-66.5	-88.5	5.0 ± 0.1	23.7	-66.3	89.5	
diluted in	y	71.5	43.1	-52.8	$2.02,5 \pm 0.003$	73.6	46.2	-48.4	$2.8=0.1$	70.2	40.6	-56.2	
$\left(\mathrm{Bu}_{4} \mathrm{~N}_{2} \mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right.$	z	77.0	5 5. 7	37.3	2.977 ± 0.003	73.6	33.0	41.6	2.3 ± 0.1	77.5	59.2	33.8	
$\left(\mathrm{Bu} \mathrm{SN}^{-}\right)_{2} \mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}$	x	22.9	-67.2	-89.1	2.026	24.8	-65.3	89.3	3.9 ± 0.1^{e}		i		
diluted in	y	71.5	43.1	-52.8	2.023	70.2	44.2	-52.5	3.9 ± 0.1^{e}		f		
$\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2} \mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}$	2	77.0	55.7	37.3	2.086	75.8	56.1	37.5	16.2 ± 0.2^{e}	73.1	55.6	38.3	
$\left(\mathrm{Bu} 4_{4} \mathrm{~V}_{2} \mathrm{RhSS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}{ }^{\text {a }}\right.$	x	37.2	64.8	64.5	2. 4.47	36.8	66.7	63.2	$<0.4{ }^{\text {d }}$				
diluted in	y	-54.2	44.9	66.8	2.019	-54.7	44.9	66.1	0.75 ± 0.1	-55.6	43.6	66.7	
$\left(\mathrm{Bu} \mathrm{H}_{4}\right)_{2} \mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}$	2	-82.1	-5is. 5	35.6	1.936	-80.9	-54.2	37.3	$<0.4{ }^{\text {d }}$				

${ }^{a}$ Estimated accuracy in g-value measurements ± 0.001 except where noted. ${ }^{b}$ In this crystal there are two magnetically inequivalent molecules per unit cell; the g-values are the sanne within experimental error; we list the direction angles for only one of the molecules. ${ }^{c}$ Values obtained from an enriched $\mathrm{Ni}^{\oplus 1}$ sample in a $\mathrm{CHCl} l_{3}-\mathrm{DMF}$ glass at $100^{\circ} \mathrm{K}$. ${ }^{d}$ Hyperfine splitting too small to be measured. ${ }^{6}$ Refers to ${ }^{63} \mathrm{Cu}$. ${ }^{f}$ Because of the near axial symmetry, meaningful direction angles could not be obtained. a A different crystal rotation axis system was used than in the Co - or Cu -doped crystals.
value of $g_{x x}$ for the magnetically dilute single crystal. The effect on $g_{x x}$ of the nickel complex may be due to a solvent effect to be discussed more fully below, but there is no ready explanation for the large discrepancy in the case of the rhodium complex. Normally, paramagnetic resonance data of magnetically concentrated crystals may be suspect because of the possible averaging of g-values of magnetically unequivalent sites by electron spin exchange. Such averaging occurs in crystals of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, for instance, ${ }^{16}$ containing two magnetically unequivalent sites in a unit cell. The crystal structure of the isomorphous $\left(n-\mathrm{Bu}_{4} \mathrm{~N}\right)_{2^{-}}$ $\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{14}$ reveals only one molecule per unit cell, so averaging of principal g-values by spin exchange is not expected to occur, even with a considerable spinexchange rate.

Preliminary Discussion

Previous magnetic susceptibility work ${ }^{10,11,13}$ has shown that the complexes investigated here have a low $\operatorname{spin}(S=1 / 2)$ ground state. This is particularly true of the complex $\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ which has been shown ${ }^{10}$ to have a susceptibility consistent with $S=1 / 2$ in several solid crystalline salts, in magnetically diluted salts, as well as in solutions of acetone, DMSO, and DMF. Our previous findings are thus inconsistent with the earlier claim ${ }^{17}$ that $\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ is a high-spin ($S=3 / 2$) square-planar cobaltous complex. In the next section we will present evidence for the correct ground-state configuration of this cobalt complex derived from the paramagnetic resonance results.

Beginning with the complex $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$, we find that $g_{z z}>g_{x x}, g_{y y}$, and $g_{x x} \sim g_{y y}$. We also find '. $\left.A_{z z}!\gg A_{x x}\right\}, A_{y y}$. These results are typical of squareplanar $\mathrm{Cu}(\mathrm{II})$ complexes with the electronic configuration d^{9}, or a vacancy configuration d^{1}. Previous paramagnetic resonance studies ${ }^{2-4}$ on single crystals of square-planar $\mathrm{Cu}(\mathrm{II})$ complexes makes it highly likely that the vacancy is in a $\mathrm{d}_{x y}$ orbital in $\mathrm{D}_{2 \mathrm{~h}}$ symmetry. The polarized optical absorption spectra of bis(acetylacetonato) copper(II) were interpreted by Ferguson, ${ }^{18}$ who concluded that the vacancy occupies a d_{yz} orbital in D_{zh} symmetry. Ferguson's analysis has,

[^4]however, been disputed by Piper and Belford, ${ }^{19 a}$ who point out that the analysis was based upon an inaccurate crystallographic structure. This reinterpretation has been accepted by Ferguson, et al. ${ }^{19 \mathrm{~b}}$ It should be pointed out that the spin-Hamiltonian of bis(acetylacetonato)copper(II) is completely inconsistent with a $d_{y_{2}}{ }^{1}$ vacancy configuration. ${ }^{3}$ Turning to the other complexes investigated here, we find that they contain two less valence electrons than does $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}-\right.$ $\left.(\mathrm{CN})_{4}\right]^{-2}$ and are thus presumably d^{7} complexes. It has been suggested ${ }^{20}$ that $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-}$is, in fact, d^{9} with spin-paired monoanion radical ligands. It should be noted, however, from Table I that the largest g-value is $g_{x x}$, not $g_{z z}$, and that $g_{x x}$ and $g_{y y}$ are significantly different. In fact, $g_{2 z}$ is the smallest g-value, which is difficult to reconcile with a d^{9} metal ion configuration in which the vacancy occupies a $\mathrm{d}_{x y}$ orbital. We will thus begin by assuming that the metal ion in the nickel, cobalt, and rhodium complexes can be treated as a d^{7} electronic configuration with $S=1 / 2$ and attempt in the next sections to reconcile this assumption with the observed spin-Hamiltonians and, to some extent, with the optical spectra.

Theoretical Results

It would be preferable to develop spin-Hamiltonians for the complexes under discussion through the use of a basis set of molecular orbitals consisting of linear combinations of metal and ligand orbitals. ${ }^{21,22}$ A1though this has been done for square-planar $\mathrm{Cu}(\mathrm{II}),{ }^{3,5,8}$ an analogous theory would be exceedingly cumbersome for a di configuration. We will, therefore, not attempt to use molecular orbitals, but rather approach the problem with a basis set of the d atomic orbitals. We will later attempt to account for delocalization of the wave functions by reducing the spin-orbit coupling parameter, ζ, and $\overline{r^{-3}}$, the mean inverse cube electronnuclear distance, which are deduced from the electronic spectra of the free ions. Our development will be similar to that of Griffith ${ }^{23}$ for the d^{n} strong field complexes, except that we use a basis set of real dorbitals.

[^5]We will abbreviate the orbital basis set as ϵ, μ, y, x, and 0 , which stand for the real d-orbitals $\mathrm{d}_{x y}, \mathrm{~d}_{x^{2}}-y^{2}$. $\mathrm{d}_{y z}, \mathrm{~d}_{x z}$, and $\mathrm{d}_{32^{2}-r^{2}}$, respectively. The d-orbital phases are chosen to be those prescribed by Condon and Shortley. ${ }^{24}$ We will be discussing vacancy (i.e., hole), rather than electron configurations, throughout; ζ is thus negative. ${ }^{23}$ We begin with $\mathrm{Cu}(\mathrm{II}), \epsilon^{1}$, and proceed to the various likely d^{3} configurations.

1. Zero-Order Kramers' Doublet $|\bar{\epsilon}\rangle, \mid \bar{\epsilon}>.{ }^{25}$-The first-order improved configurational wave functions are obtained by applying the spin-orbit interaction Hamiltonian, $\sum_{k} \zeta \overrightarrow{l_{k} \cdot s_{k}}$, as a perturbation, using standard first-order perturbation theory. We find
$\psi_{\alpha}{ }^{+}=N_{\alpha}|\dot{\epsilon}\rangle+i \alpha_{1}|\dot{\mu}\rangle-1 /{ }_{2} \alpha_{2}|\tilde{y}\rangle-\frac{i}{2} \alpha_{3}|\tilde{x}\rangle$
$\psi_{\alpha}-=N_{\alpha \mid}|\bar{\epsilon}\rangle-i \alpha_{1}|\bar{\mu}\rangle+1 / 2 \alpha_{2}|\dot{y}\rangle-\frac{i}{2} \alpha_{3}|\dot{x}\rangle$
for the first-order ground-state Kramers' doublet. N_{α} is a normalization constant which is close to one if the mixing parameters, α_{i}, are small. $\alpha_{i}=\zeta / E_{i \alpha}$ where $E_{i \alpha}$ is a configurational excitation energy. $E_{1_{\alpha}}=$ $E(|\mu\rangle)-E(|\epsilon\rangle), E_{2 \alpha}=E(\mid y>)-E(|\epsilon\rangle)$, etc. With $N_{\alpha}=1$, the following expressions are found for the spin-Hamiltonian parameters

$$
\begin{align*}
& g_{x x}=2<\psi_{\alpha}+\left|\sum_{k}\left(l_{x k}+2 s_{x k}\right)\right| \psi_{\alpha}->=2-2 \alpha_{3} \tag{3a}\\
& g_{v v}=2 i<\psi_{\alpha}+\left|\sum_{k}\left(l_{v k}+2 s_{v k}\right)\right| \psi_{\alpha}->=2-2 \alpha_{2} \tag{3b}\\
& g_{\grave{k} 2}=2<\psi_{\alpha}+\left|\sum_{k}\left(l_{z k}+2 s_{2 k}\right)\right| \psi_{\alpha}+>=2-8 \alpha_{1} \tag{3c}
\end{align*}
$$

and

$$
\begin{array}{r}
A_{x x}=2 P<\psi_{\alpha}+\left|\sum_{k}\left(l_{x k}-\kappa s_{x k}+1 / 7 a_{x k}\right)\right| \psi_{\alpha}->= \\
P\left[-2 \alpha_{3}-\kappa+2 / 7+3 / 7 \alpha_{2}\right] \\
A_{v y}=2 i P<\psi_{\alpha}+\left|\sum_{k}\left(l_{y k}-\kappa s_{y k}+1 / 7 a_{y k}\right)\right| \psi_{\alpha}>= \\
P\left[-2 \alpha_{z}-\kappa+2 / 7+3 / 7 \alpha_{3}\right] \\
A_{2 z}=2 P<\psi_{\alpha}+\left|\sum_{k}\left(l_{2 k}-\kappa s_{2 k}+1 / 7 a_{2 k}\right)\right| \psi_{\alpha}+>= \\
P\left[-8 \alpha_{1}-\kappa-4 / 7-\sqrt[3]{7}\left(\alpha_{2}+\alpha_{3}\right)\right] \tag{4c}
\end{array}
$$

In these expressions, the summation is over the electron vacancies (one in this case), and $P=2 g_{N}$. $\beta_{0} \beta_{\mathrm{N}} \overline{r^{-3}}$, where g_{N} and β_{N} are the nuclear g value, and nuclear magneton, respectively, β_{0} is the Bohr magneton, and $\overline{r^{-3}}$ is the mean inverse cube vacancymetal nucleus distance. $\overrightarrow{a_{k}}=4 \overrightarrow{s_{k}}-\left(\overrightarrow{l_{k}} \cdot \overrightarrow{s_{k}}\right) \overrightarrow{l_{k}}-$ $\overrightarrow{l_{k}}\left(\overrightarrow{l_{k}} \cdot \overrightarrow{s_{k}}\right)$, and κ is a parameter referring to the Fermi hyperfine coupling energy in units of P.
2. Zero-Order Kramers' Doublet $\left|\epsilon^{2} \mu^{+}\right\rangle,\left|\epsilon^{2} \mu^{-}\right\rangle$.We will assume that in the d^{3} configurations ϵ remains the lowest energy orbital for the vacancies, and consequently in an $S=1 / 2$ configuration is doubly occupied. We will consider the four possibilities for the groundstate configuration based upon $\left|\epsilon^{2}\right\rangle$.
(24) E. U. Condon and G. H. Shortley, "Theory of Atomic Spectra," Cambridge University Press, Cambridge and New York, 1935.
(25) The + and - symbols above the orbital wave functions refer to the eigenvalues of $h^{-1} s_{z}$, $+1 / 2$, and $-1 / 2$, respectively, according to standard usage.

Applying the spin-orbit coupling Hamiltonian to $\left|\epsilon^{2} \mu^{+}\right\rangle,\left|\epsilon^{2} \mu^{-}\right\rangle$we obtain, in first order

$$
\begin{array}{r}
\left.\psi_{a}+=N_{a}\left|\epsilon^{2} \mu^{+}>+\frac{i}{2} a_{1}\right| \epsilon_{,}^{2} y^{-}>-1 / 2 a_{2} \right\rvert\, \epsilon^{2} x^{-}>- \\
i a_{3} \mid \epsilon^{+} \mu^{2}> \\
\left.\psi_{a}-=N_{a}\left|\epsilon^{2} \mu^{-}>+\frac{i}{2} a_{1}\right| \epsilon^{2} y^{+}>+1 / 2 a_{2} \right\rvert\, \epsilon^{2} x^{+}>+ \\
i a_{3}\left|\epsilon^{-} \mu^{2}\right\rangle \tag{6}
\end{array}
$$

We have truncated the complete first-order wave functions to exclude configurations which do not contribute to the spin-Hamiltonian.

With $N_{\mathfrak{a}}=1$, we find

$$
\begin{align*}
& g_{x x}=2-2 a_{1} \tag{7a}\\
& g_{y y}=2-2 a_{2} \tag{7b}\\
& g_{z z}=2+8 a_{3} \tag{7c}
\end{align*}
$$

and

$$
\begin{align*}
& A_{x x}=P\left[-2 a_{1}-\kappa+2 / 7+3 / 7 a_{2}\right] \tag{8a}\\
& A_{v y}=P\left[-2 a_{2}-\kappa+2 / 7+3 / 7 a_{1}\right] \tag{8b}\\
& A_{z 2}=P\left[8 a_{3}-\kappa-4 / 7-3 / 7\left(a_{1}+a_{2}\right)\right] \tag{8c}
\end{align*}
$$

3. Zero-Order Kramers' Doublet $\left.\left.\left|\epsilon^{2} 0^{+}\right\rangle, \mid \epsilon^{2}\right)^{-}\right\rangle$. -The spin-orbit interaction mixes in many excited configurations in first order. Of these, we include only those which contribute to \mathbf{g} and \mathbf{A} in the following truncated first-order ground-state doublet.

$$
\begin{align*}
\psi_{b}^{+}= & N_{b}^{!} \epsilon^{2} 0^{+}>+ \\
& \left.\frac{i \sqrt{3}}{2} b_{1} \right\rvert\, \epsilon^{2} y^{-}> \tag{9}\\
& + \\
\psi_{b}^{-}= & \left.N_{b}\left|\epsilon^{2} 0^{-}\right\rangle+\frac{i \sqrt{3}}{2} b_{1} \right\rvert\, \epsilon^{2} x^{-} y^{+}> \tag{10}\\
& \left.\frac{\sqrt{3}}{2} b_{2} \right\rvert\, \epsilon^{2} x^{+}>
\end{align*}
$$

Using this ground state, we find the spin-Hamiltonian parameters

$$
\begin{align*}
& g_{x x}=2-6 b_{1} \tag{11a}\\
& g_{y y}=2-6 b_{2} \tag{11b}\\
& g_{z z}=2 \tag{11c}
\end{align*}
$$

and

$$
\begin{align*}
& A_{x x}=P\left[-6 b_{1}-\kappa-2 / 7-3 / 7 b_{z}\right] \tag{12a}\\
& A_{y y}=P\left[-6 b_{2}-\kappa-2 / 7-3 / 7 b_{1}\right] \tag{12~b}\\
& A_{z z}=P\left[-\kappa+4 / 7+3 / 7\left(b_{1}+b_{z}\right)\right] \tag{12c}
\end{align*}
$$

where we have made the approximation that $N_{b}=1$.
4. Zero-Order Kramers' Doublet $\left|\epsilon^{2} y^{+}\right\rangle,\left|\epsilon^{2} y^{-}\right\rangle$.We obtain the perturbed ground-state doublet wave functions

$$
\begin{align*}
\psi_{c}{ }^{+}= & N_{c}\left|\epsilon^{2} y^{+}>-\frac{i \sqrt{3}}{2} c_{1}\right| \epsilon^{2} 0^{-}>+ \\
& \left.\frac{i}{2} c_{2}\left|\epsilon^{2} x^{+}>-\frac{i}{2} c_{3}\right| \epsilon^{2} \mu^{-}>-1 / 2 c_{4} ; \epsilon^{-} y^{2}\right\rangle \tag{13}
\end{align*}
$$

$$
\begin{align*}
\psi_{c}-= & N_{c} i \epsilon^{2} y^{-}>-\frac{i \sqrt{3}}{2} c_{1} \epsilon^{2}()+>- \\
& \frac{i}{2} c_{2} ; \epsilon^{2} x^{-}>-\frac{i}{2} c_{3}\left|\epsilon^{2} \mu^{+}>+1 / 2 c_{4}\right| \epsilon^{+} y^{2}> \tag{14}
\end{align*}
$$

which again include only those admixed configurations which contribute to g and A. With $N_{c}=1$, the spinHamiltonian parameters obtained from eq. 13 and 14 are

$$
\begin{align*}
& g_{x x}=2-6 c_{1}-2 c_{3} \tag{15а}\\
& g_{y y}=2-2 c_{4} \tag{15b}\\
& g_{z 2}=2-2 c_{2} \tag{15c}
\end{align*}
$$

and

$$
\begin{array}{r}
A_{x x}=P\left[-6 c_{1}-2 c_{3}-\kappa-4 / 7-3 / 7\left(c_{2}+\right.\right. \\
\left.\left.c_{4}\right)\right] \\
A_{y y}=P\left[-2 c_{4}-\kappa+2 / 7+3 / 7\left(c_{1}+c_{2}-c_{3}\right)\right] \\
A_{z z}=P\left[-2 c_{z}-\kappa+2 / 7+3 / 7\left(c_{3}-c_{1}-c_{4}\right)\right] \tag{16c}
\end{array}
$$

5, Zero-Order Kramers' Doublet $\left|\epsilon^{?} x^{+}\right\rangle,\left|\epsilon^{2} x^{-}\right\rangle$.We will not develop this case separately, since it can be shown readily that the spin-Hamiltonian obtained is of the same form as that obtained from the doublet $\left.\left.\epsilon^{2} y^{+}\right\rangle, \quad \epsilon^{2} y^{-}\right\rangle$, but with interchanged magnetic x and y-axes. The coefficients, c_{i}, must be changed to refer to different excitation energies, however.

Comparison with Observed Spin-Hamiltonians

The observed \mathbf{g}, Table I, will be compared with each of the theoretical expressions developed in the previous sections. The resulting parameters, $\alpha_{i}, a_{i}, b_{i}, c_{i}$, will then be introduced into the expressions for A. The best over-all agreement of the calculated \mathbf{A} with experiment will be taken to indicate the probable ground-state configuration.

1. $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$. -In this case we assume that the configuration is $\mid \epsilon>$. We will also assume, for simplicity, that $g_{x x}=g_{y y}$, neglecting the small rhombic distortion and taking their average value as g. Substitution of g_{22} and g_{\perp} into eq. $3 \mathrm{a}, 3 \mathrm{~b}$, and 3 c gives $\alpha_{1}=-0.0105, \alpha_{2} \sim \alpha_{3}=-0.0105$. Substituting these parameters into eq. $4 \mathrm{a}-\mathrm{c}$, we obtain $A_{x x} \sim$ $A_{y y}=P[0.30-\kappa], A_{z z}=P[-0.48-\kappa]$. The observed hyperfine coupling constant in solution, $\langle a\rangle=$ $1 / 3\left(A_{x x}+A_{y y}+A_{z z}\right) \sim 76$ gauss, is consistent only with $A_{x x}, A_{y y}$, and $A_{z z}$ of the same sign, and since $A_{z z} \mid \gg A_{x x}, A_{v v}$, the sign of each must be negative (P is positive for ${ }^{63,65} \mathrm{Cu}$). The observed hyperfine parameters of Table I give $P=1.6 \times 10^{-2} \mathrm{~cm} .^{-1}$, and $\kappa=0.55$. For the free ion, $P_{0} \sim 3.5 \times 10^{-2}$ $\mathrm{cm} .^{-1},{ }^{26}$ so in this complex $\overline{r^{-3}}$ has roughly one-half the free ion value, indicating strongly covalent σ-bonding.

The more accurate molecular orbital theory for planar $\mathrm{Cu}(\mathrm{II})$ complexes ${ }^{3}$ has been applied by Pettersson and Vänngård ${ }^{7}$ to bis $(\mathrm{N}, \mathrm{N}$-disubstituted dithiocarbamato) Cu (II) complexes, which have spin-Hamiltonians similar to $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ and in which the metal is coordinated only by sulfur. Similar conclusions have been drawn regarding the high degree of covalency of the $\mathrm{Cu}-\mathrm{S}$ bonds.

[^6]2. $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-}$.-The configuration $\mid \epsilon^{2} \mu>$ leads to $a_{1}=-0.079, a_{2}=-0.020$, and $a_{3} \sim-0.001$, by solving eq. $7 a-c$ with the observed g values. The hyperfine interaction is then given from eq. $\delta a-c$ by $A_{x x}=P[0,43-\kappa], 1_{v y}=P[0.29-\kappa]$, and $A_{2 z}=$ $P[-0.53-k]$. The observed $\left|A_{2 z} \lll A_{x x}\right|$ would require a negative value for κ which is not unreasonable in this configuration due to the possibility of mixing ; $4 \gg$ with $3 \mu>$ in $\mathrm{D}_{2 \mathrm{~h}}$ symmetry. However, if κ is negative, it is not possible to obtain $\left|\cdot 1_{r x}\right| \gg .1_{y v} \mid$ which is observed experimentally. We thus consider the $\mid \epsilon^{2} \mu>$ ground-state configuration unlikely.

The configuration $\epsilon^{2}(1)>$ leads to $b_{1}=-0.027, b_{2}=$ -0.007 by substitution of the experimental \mathbf{g} into eq. $11 \mathrm{a}-\mathrm{c}$. We then find from eq. $12 \mathrm{a}-\mathrm{c}$ that $.1_{x x}=$ $P[-0.13-\kappa], A_{v \nu}=P[-0.23-\kappa]$, and $A_{z 2}=P[0.56$ $-\kappa$]. A positive κ which is required to reduce $.1_{2 z}$ to a value less than $A_{x x}$ simultaneously yields $A_{w v}$; $>._{x x^{\prime}}$, contrary to observation. The configuration $\epsilon^{2}(1)$ is thus also unlikely.

We next examine the configuration $\left|\epsilon^{2} y\right\rangle$. We find $3 c_{1}+c_{3}=-0.079$, and $c_{4}=-0.020$ by solution of eq. 15 a and b . The theory is not sufficiently accurate to enable the determination of c_{2} from eq. 15 c , but it is probably small, and we shall ignore it in eq. 16 . It will be shown below that with $N_{c}<1$, as is required for normalization, $g_{2 z}$ can be reduced below 2.0023 . By substitution of the c_{i} into eq. $16 \mathrm{a}-\mathrm{c}$, we find $.1_{x x}=$ $P[-0.41-\kappa], A_{\nu y}=P[0.33-\kappa]$, and $A_{22}=P[0.29-$ κ], where we have made the approximation $c_{1}=c_{3}=$ -0.02 when these coefficients appear in the smaller terins. If it is assumed that $A_{x x}$ and $A_{y y}$ are of the same sign, the experimental values may be fit with $\kappa=$ 0.51 , and $P=1.6 \times 10^{-3} \mathrm{~cm} .^{-1}$; whereas, a fit is obtained with $\kappa=0.21$, and $P=2.5 \times 10^{-3} \mathrm{~cm} .^{-1}$ if they are of opposite signs. The predicted values of A_{22} are $-0.35 \times 10^{-3} \mathrm{~cm} .^{-1}$, and $0.20 \times 10^{-3} \mathrm{~cm} .^{-1}$, respectively. The ${ }^{6!} \mathrm{Ni}$ hyperfine interaction in solution, $\langle a\rangle=4.5 \pm 1$ gauss, favors the assignment of $A_{x x}$ and $\Lambda_{v y}$ with opposite signs. The sign of $\Lambda_{x x}$ is predicted to be negative. If we use the most recent value of the nuclear moment of ${ }^{61} \mathrm{Ni}, \mu=0.70 \pm 0.04 \beta_{\mathrm{N}},{ }^{27}$ we can estimate P_{0} for the free ion. We use an equation given by Trees, ${ }^{28}$ derived from formulas of Goudsmit, ${ }^{29}$ which relates ζ to \bar{r}^{-3} for the free ion. We take $\zeta=715 \mathrm{~cm} .^{-1}$ for $\mathrm{Ni}(\mathrm{III}),{ }^{30}$ and find $P_{0}=0.010 \mathrm{~cm} .^{-1}$. Reduction of r^{-3} for the ion in the complex might be expected to reduce P to about $6 \times 10^{-3} \mathrm{~cm} .^{-1}$, but not much lower. However, the order of magnitude is correct, and we accept the $\left|\epsilon^{2} y\right\rangle$ configuration as consistent with the observed spin-Hamiltonian. Inspection quickly shows that the configuration $\mid \epsilon^{2} x>$ is inconsistent with the spin-Hamiltonian, so $\epsilon^{2} y>$ is the probable ground-state configuration of $\left[\mathrm{NiS}_{4}\right.$ -$\left.\mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-}$.
3. $\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathbf{C N})_{4}\right]^{-2} .-$ Beginning with the assumed ground-state configuration $\left|\epsilon^{2} \mu\right\rangle$, we find $a_{1}=$ $-0.400, a_{2}=-0.011, a_{3}=-0.003$. These parameters yield the principal hyperfine couplings $A_{x x}=$ $P[1.08-\kappa], A_{\nu j}=P[0.14-\kappa]$, and $A_{z z}=P[-0.42$ $-\kappa]$. The observed values of $A_{x x}, A_{u v}$, and $A_{z z}$

[^7]can be fit approximately with $\kappa=-1.4, P=2 \times$ $10^{-3} \mathrm{~cm} .^{-1}$, provided these parameters are all positive. P_{0} for the Co(II) free ion has been deduced to be 0.022 $\mathrm{cm} .^{-1}$ by Abragam and Pryce. ${ }^{31}$ It seems unlikely that P could be reduced by an order of magnitude in this complex, so we conclude that $\left|\epsilon^{2} \mu\right\rangle$ is an unlikely ground-state configuration.

We next assume that the ground-state configuration is $\left|\epsilon^{2} 0\right\rangle$, and obtain $b_{1}=-0.133, b_{2}=-0.004$. We will not be concerned at this point that g_{22} is less than 2. It will be shown below that if terms in $b_{1}{ }^{2}$ are retained in the development of the spin-Hamiltonian, $g_{22}=2-3 b_{1}{ }^{2}$ is obtained which yields $g_{2 z} \sim 1.95$, a value in tolerable agreement with the experimental one. Substitution of b_{1} and b_{2} into eq. 12a-c gives $A_{x x}$ $=P[0.51-\kappa], A_{y y}=P[-0.21-\kappa]$, and $A_{z z}=$ $P[0.51-\kappa]$. These values predict that $A_{x x} \sim A_{22}$ for any value of κ and P and thus cannot be reconciled with the observed hyperfine tensor. These expressions are not changed significantly by retaining terms of order $b_{1}{ }^{2}$. The ground-state configuration $\left|\epsilon^{2} 0\right\rangle$ is thus considered an unlikely one.

If the ground-state configuration is $\left|\epsilon^{2} y\right\rangle$, we find $c_{1}=-0.13$ and $c_{4}=-0.011$, where we have assumed $\left|c_{3}\right|<\left|c_{1}\right|$. We shall examine this configuration using a more accurate theory below. For now, we will assume that c_{2} and c_{3} are small and can be ignored. From eq. 16a-c, we find $A_{x x}=P[0.23-\kappa], A_{y \nu}=P[0.25-$ к], $A_{22}=P[0.35-k]$. Taking $P=0.018 \mathrm{~cm} .{ }^{-1}$, $\kappa=0.48$, we find $A_{x x}=-4.5 \times 10^{-3}, A_{\nu \nu}=-4.1 \times$ 10^{-3}, and $A_{22}=-2.3 \times 10^{-3} \mathrm{~cm} .^{-1}$, values which are in tolerable agreement with experiment, considering the crudeness of the theory at this stage. The value of P required for this fit is reasonable in comparison with the free ion value. ${ }^{31}$

The agreement can be improved considerably by retaining terms in $c_{1}{ }^{2}$ in the development of the spinHamiltonian. We will justify the assumption that c_{3} is small in comparison with c_{1}, below. The equivalents of eq. 11a-c and $12 \mathrm{a}-\mathrm{c}$ are found to be

$$
\begin{align*}
& g_{x x}=2-6 c_{1}-2 c_{3} \tag{17a}\\
& g_{y y}=2-2 c_{4}-3 c_{1}^{2} \tag{17b}\\
& g_{z z}=2-2 c_{2}-3 c_{1}^{2} \tag{17c}
\end{align*}
$$

and

$$
\begin{align*}
A_{x x}= & P\left[-6 c_{1}-2 c_{3}-\kappa+1 / 7\left\{-4+3 / 2 c_{1}{ }^{2}-\right.\right. \\
& \left.\left.3\left(c_{2}+c_{4}\right)\right\}\right] \quad(18 \mathrm{a}) \tag{18a}\\
A_{v v}= & P\left[-2 c_{4}-\kappa+1 / 7\left\{2+3\left(c_{1}+\right.\right.\right. \\
& \left.\left.\left.c_{2}-c_{3}\right)\right\}\right] \tag{18b}\\
A_{u t}= & P\left[-2 c_{2}-\kappa+1 / 7\left\{2-9 / 2 c_{1}{ }^{2}-3 c_{1}+3\left(c_{3}-\right.\right.\right.
\end{align*}
$$

$$
\left.\left.\left.c_{4}\right)\right\}\right] \quad(18 \mathrm{c})
$$

We may now obtain a crude estimate of c_{3}, and verify that it is smaller than c_{1}. Neglecting interelectronic repulsion terms, c_{3} refers to the excitation $|y\rangle \rightarrow|\mu\rangle$ for a vacancy; whereas, c_{4} refers to the excitation $|\epsilon\rangle \rightarrow|y\rangle$. In the $\mathrm{Cu}(\mathrm{II})$ complex, α_{1} refers to the vacancy excitation $|\epsilon\rangle \rightarrow|\mu\rangle$ directly. Assuming little change in the quantity $(|\epsilon\rangle-j \mu\rangle)$ the one electron energy level difference between Cu (II) and Co (II),

[^8] 173 (1951).
we obtain the equation
\[

$$
\begin{equation*}
c_{3} \sim c_{4}\left[\frac{c_{4} \zeta \mathrm{Cu}}{\alpha_{1} \zeta_{\mathrm{Co}}}-1\right]^{-1} \tag{19}
\end{equation*}
$$

\]

A value of c_{4} is obtained from eq. 17 b and the experimental $g_{v y}$, assuming $c_{1} \sim-0.13$. The ratio $\zeta_{\mathrm{Cu}} / \zeta_{\mathrm{Co}}$ is taken from the free ion values. ${ }^{30}$ We find $c_{3}=-0.01$ from eq. 19, and from eq. $17 \mathrm{a}-\mathrm{c}$ we obtain $c_{1}=-0.13$, $c_{2}=-0.013$, and $c_{4}=-0.037$. Substitution of these values into eq. 18a-c gives $A_{x x}=P[0.25-k], A_{y y}=$ $P[0.30-\kappa]$, and $A_{2 z}=P[0.37-\kappa]$. With $P=$ $0.020 \mathrm{~cm}^{-1}$ and $\kappa=0.47$, we obtain $A_{x x}=-4.4 \times$ $10^{-3}, A_{w v}=-3.4 \times 10^{-3}$, and $A_{2 z}=-2.0 \times 10^{-3}$ $\mathrm{cm} .^{-1}$. It is noteworthy that reasonable quantitative agreement is obtained with P near the free ion value.

By similar arguments it is found that no reasonable agreement with experiment is obtained with the groundstate configuration $\left|\epsilon^{2} x\right\rangle$. We conclude that the probable ground-state configuration of $\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ is $\left|\epsilon^{2} y\right\rangle$.
4. $\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$.-Assuming the configuration $\left|\epsilon^{2} \mu\right\rangle$, we find $a_{1}=-0.223, a_{2}=-0.009, a_{3}=-0.008$, from which are obtained $A_{x x}=P[0.73-\kappa], A_{\nu y}=$ $P[0.21-k]$, and $A_{z 2}=P[-0.54-\kappa]$. For any value of κ, either positive or negative, $\left|A_{x x}\right|$ or $\left|A_{z z}\right|$ is larger than $\mid A_{y y}$. Since these possibilities are in qualitative disagreement with the experimental observation $\left|A_{v v}\right|>\left|A_{x x}\right|,\left|A_{z z}\right|$, we discard $\mid \epsilon^{2} \mu>$ as unlikely.

If we next assume that the configuration is $\left|\epsilon^{2} 0\right\rangle$, we find, using eq. 11a-c, $b_{1}=-0.074, b_{2}=-0.003$, whereupon, from eq. $12 \mathrm{a}-\mathrm{c}$, we find $A_{x x}=P[0.16-$ κ], $A_{v \nu}=P[-0.24-\kappa]$, and $A_{2 z}=P[0.54-\kappa]$. It is consistent with these expressions that $\left|A_{y y}\right|>\left|A_{x x}\right|$, $\left|A_{z 2}\right|$. We may estimate P_{0} for the free ion $\mathrm{Rh}(\mathrm{II})$, as outlined previously, and we find $P_{0} \sim-3.2 \times 10^{-3}$ $\mathrm{cm} .^{-1}$. If we assume that $\overline{r^{-3}}$ is reduced to about onehalf the free ion value in this complex, and use the experimentally determined $\left|A_{y v}\right|=0.74 \pm 0.1 \times 10^{-3}$ $\mathrm{cm} .^{-1}$, we find $\kappa=0.22 \pm 0.06, A_{x x}=+0.1 \pm 0.1 \times$ 10^{-3}, and $A_{22}=-0.51 \pm 0.1 \times 10^{-3} \mathrm{~cm} .^{-1} . A_{v v}$ is predicted to be positive. A more accurate set of equations can be developed for this configuration which retain terms of order $b_{1}{ }^{2}$. These are

$$
\begin{align*}
& g_{x x}=2-6 b_{1} \tag{20a}\\
& g_{v v}=2-6 b_{2}-3 b_{1}^{2} \tag{20b}\\
& g_{2 x}=2-3 b_{1}^{2} \tag{20c}
\end{align*}
$$

and
$A_{x x}=P\left[-6 b_{1}-\kappa-1 / 7\left(2+3 b_{2}+3 / 2 b_{1}{ }^{2}\right)\right]$
$A_{\nu \nu}=P\left[-6 b_{2}-\kappa-1 / 7\left(2+3 b_{1}\right)\right]$
$A_{z z}=P\left[-\kappa+1 / 7\left(4+3 b_{1}+3 b_{2}-9 / 2 b_{1}{ }^{2}\right)\right]$
From eq. 20a-c, we obtain $b_{1}=-0.074$ and $b_{2}=$ -0.0056 . Substitution into eq. 21a-c gives $A_{x x}=$ $P[0.16-\kappa], A_{\nu \nu}=P[-0.22-\kappa]$, and $A_{z 2}=P[0.53-$ к]. If we again estimate $P=-1.6 \times 10^{-3} \mathrm{~cm} .^{-1}$, we obtain $\kappa=0.24 \pm 0.06, A_{x x}=+0.13 \pm 0.1 \times 10^{-3}$, and $A_{22}=-0.46 \pm 0.1 \times 10^{-3} \mathrm{~cm} .^{-1}$. The agreement with the experimental data is only fair, $A_{z z}$ being calculated to be somewhat too large. These values are very sensitive to the magnitude of P, however. A 10% reduction gives extremely good agree-
ment. There is a discrepancy in the observed and calculated values of g_{22} which is probably the result of a general inadequacy of our theory in dealing quantitatively with the heavier 4 d and 5 d transition series.

For the configuration $\left|\epsilon^{2} y\right\rangle$, we obtain $c_{1}=-0.071$, $c_{2} \sim 0, c_{4} \sim-0.016$, and have estimated $c_{3} \sim-0.01$, Substitution into eq. $18 \mathrm{a}-\mathrm{c}$ gives $A_{x x}=P[-0.12-$ $\kappa], A_{y y}=P[0.29-\kappa]$, and $A_{z z}=P[0.31-\kappa]$. These expressions are incompatible with the observed $\left.\right|_{A y y} ^{\prime}>$ $\left.\mid A_{x x}\right\},\left\{A_{z z}!\right.$, and we think that the configuration $\left|\epsilon^{2} y\right\rangle$ is unlikely for the rhodium complex.

It is found that the configuration $\epsilon^{2} x>$ leads to $A_{x x}=$ $P[0.73-\kappa], A_{\nu y}=P[-0.45-\kappa]$, and $A_{z z}=P[0.38$ - κ]. A value of κ may be found such that $\left|A_{y y}\right|>$ $A_{x x}, A_{z z}$ by a factor of roughly two which is the experimental criterion, but this requires $\kappa \gtrsim 0.33$. In order to fit the experimental value of $A_{v y}, P=$ $-1.0 \times 10^{-3} \mathrm{~cm} .^{-1}$ would be required. Although a value of P this small can not be ruled out, it seems less likely than the larger value discussed in connection with the $\left.\epsilon^{2} 0\right\rangle$ configuration above. We conclude that the probable ground-state configuration of [Rh$\left.\mathrm{S}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-9}$ is $\mid \epsilon^{2(1)\rangle}$.

Comparison with Optical Spectra

Evaluation of the parameters α_{i}, a_{i}, etc., from the expressions for g in the previous section allows an estimate of configurational excitation energies to be made. No great accuracy can be expected, since the one-electron parameter, ζ, is reduced from the free ion value because of the covalency of the orbitals in the complex, by an undetermined factor. For these complexes, it is probably reasonable in general to take ζ to be about 0.5 to 0.7 of the free ion value, ζ_{0}.
$\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$.-For $\mathrm{Cu}(\mathrm{II})$, the free ion value of the spin-orbit coupling parameter is $\zeta_{0}=828 \mathrm{~cm} .^{-1}$. Since it was found that $\alpha_{1} \sim \alpha_{2} \sim \alpha_{3} \sim-0.010$ in order to fit the paramagnetic resonance data, we conclude that the states $\mu>,|x\rangle$, and $\mid y>$ lie between 40,000 and $60,000 \mathrm{~cm} .^{-1}$ above the configuration $|\epsilon\rangle$. These excitation energies arise from assuming $\zeta=$ $0.5 \zeta_{0}$ and $\zeta=0.7 \zeta_{0}$, respectively. The energy of $0>$ cannot be obtained from the paramagnetic resonance data, since $\{0\rangle$ is not mixed with the ground state, $|\epsilon\rangle$, by spin-orbit coupling.

We find one optical transition in $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ at $8330 \mathrm{~cm} .^{-1}, \epsilon=94$, which could possibly be assigned to a d-d transition- most likely $\left.\left.\right|_{\epsilon}\right\rangle \rightarrow|0\rangle$. Some doubt is cast upon the interpretation of this transition as $\epsilon>\rightarrow$ (1) by our failure to observe any transition of $\epsilon \gtrsim 10$ in the range $5000-12,000 \mathrm{~cm} .^{-1}$ in $\operatorname{bis}(\mathrm{N}, \mathrm{N}$-diethyldithiocarbamato)copper(II). This complex has g and g_{\perp} essentially the same as those of $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2,7}$ and consequently the d-electron excitation energies would be expected to be similar.
$\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{+}\right]^{-}$. $\mathrm{In} \mathrm{Ni}(\mathrm{III}), \zeta_{0}=715 \mathrm{~cm} .^{-1}$, and we will assume that ζ is reduced to $430 \pm 70 \mathrm{~cm} .^{-1}$ in the complex. If $c_{1} \sim c_{3}$, we find $c_{1} \sim c_{3} \sim c_{4} \sim$ -0.02. From the paramagnetic resonance data, we predict that the excited configurations $\left|\epsilon^{2}\right|\rangle$, $\epsilon^{2} \mu>$, and $\epsilon y^{2}>$ lie between 18,000 and $25,000 \mathrm{~cm} .^{-1}$ above the ground-state configuration $\epsilon^{2} y>$. In terms of one-electron energies, we have consistency with the results for $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ for which the excitation $|\epsilon\rangle \rightarrow|\mu\rangle$ was predicted to occur in the vicinity of
$50,000 \mathrm{~cm} .^{-1}$. The paramagnetic resonance data are again consistent with a strong tetragonal field.

The optical spectrum of the ion in acetone reveals at least one band with $\epsilon \lesssim 100$ near $19,000 \mathrm{~cm} .^{-1}$ appearing as a shoulder to a more intense band ($\epsilon \sim$ $2500)$ peaking at 21,000$) \mathrm{cm} .^{-1}$. The weak shoulders are reasonably assigned to any of the $d-d$ transitions $\left|\epsilon^{2} y\right\rangle \rightarrow \epsilon^{2}| \rangle,\left|\epsilon^{2} \mu\right\rangle,\left|\epsilon y^{2}\right\rangle$, since they are of reasonable intensity and occur in the frequency region predicted by the paramagnetic resonance data. A band with $\epsilon \sim 300$ occurring as a shoulder at $\sim 8850 \mathrm{~cm} .^{-1}$ on an extremely intense band at $11,590 \mathrm{~cm} .^{-1}(\epsilon \sim 8000)$ can not be assigned as a $d-d$ transition.
$\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$.-The $\mathrm{Co}(\mathrm{II})$ free ion has $\zeta_{0}=$ $515 \mathrm{~cm} .^{-1}$. Using $\zeta=310 \pm 50 \mathrm{~cm} .^{-1}$ for the complex, and the values $c_{1}=-0.13, c_{2}=-0.013, c_{3}=$ -0.01 , and $c_{4}=-0.037$, we find that the energies of the configurations $\epsilon^{2}| \rangle,\left|\epsilon^{2} x\right\rangle,\left|\epsilon^{2} \mu\right\rangle$, and $\left|\epsilon y^{2}\right\rangle$ are $2400 \pm 400,24,000 \pm 4000,31,000 \pm 5000$, and $8400) \pm 1400 \mathrm{~cm} .^{-1}$ above the ground-state configuration $\left|\epsilon^{2} y\right\rangle$. In the visible region, transitions $\left|\epsilon^{2} y\right\rangle \rightarrow$ $\left|\epsilon y^{2}\right\rangle, \mid \epsilon y(\mid>$ would be predicted to occur at approximately $8400 \pm 1400 \mathrm{~cm} .^{-1}$ and $10,800 \pm 1800 \mathrm{~cm} .^{-1}$, whereas all other d-d transitions would be expected either in the ultraviolet or in the far-infrared range.

Two weak bands are, in fact, observed in the visible spectrum in dimethylformamide solution and occur as shoulders on a strong band peaking at $18,000 \mathrm{~cm} .^{-1}$ ($\epsilon \sim 35000$). The weak bands have maxima at $\sim 12,500$ $\mathrm{cm} .^{-1}(\epsilon \sim 70)$ and $\left.\sim 15,000\right) \mathrm{cm}^{-1}(\epsilon \lesssim 100)$. The agreement with the observed positions of the bands may be improved considerably by using a larger value of ζ for the complex. The paramagnetic resonance hyperfine structure of the cobalt complex was fit with a value of P approximately 90% of the free ion value, and since P has the same dependence on $\overline{r^{-3}}$ as does ζ, a value of ζ about 90% of the free ion value would seem more reasonable in this case. With $\zeta \sim 0.9 \zeta_{0} \sim 460 \mathrm{~cm} .^{-1}$, the visible transitions are predicted to occur at approximately 12,400 and 15,900 $\mathrm{cm} .^{-1}$. The approximate energies of the excited configurations $\left.{ }^{1} \epsilon^{2}(0\rangle, \epsilon^{2} x\right\rangle$, and $\left|\epsilon^{2} \mu\right\rangle$ based upon the larger value of ζ are then $3500,35,000$, and 46,000 $\mathrm{cm} .^{-1}$, respectively.
$\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$. - In $\mathrm{Rh}(\mathrm{II}), \zeta_{0}=1220 \mathrm{~cm} .^{-1}$. Assuming $\zeta \sim(0.6 \pm 0.1) \zeta_{0}$, and using $b_{1}=-0.074$ and $b_{2}=-0.0056$, we find that the energies of the configurations $\left|\epsilon^{2} y\right\rangle$ and $\left|\epsilon^{2} x\right\rangle$ are 9900 ± 1600 and $130,000 \pm 22,000 \mathrm{~cm} .^{-1}$, respectively, above the groundstate configuration $\left|\epsilon^{2}(\rangle\right\rangle$. The latter excitation energy is probably not reliable, since it is obtained from the rather small $\Delta g_{v u}$, and inadequacies in the theory for 4 d complexes would be expected to affect conclusions drawn from the smaller Δg values to the greatest extent. The energy of $\epsilon^{2} y>$ is probably a better estimate since it is obtained from the relatively large $\Delta g_{x x}$.

The optical spectrum of $\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ contains one weak band which could be assigned to a d-d transition. The band has $\epsilon \sim 30$, and a maximum at $7810 \mathrm{~cm} .^{-1}$. It is reasonable to assign this transition to $\left.\left|\epsilon^{2}(1\rangle \rightarrow\right| \epsilon^{9} y\right\rangle$.

Summary

From measurements of the paramagnetic resonance spectra of the complexes $\left[\mathrm{CuS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2},\left[\mathrm{NiS}_{4} \mathrm{C}_{4}-\right.$ $\left.(\mathrm{CN})_{4}\right]^{-},\left[\mathrm{CoS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$, and $\left[\mathrm{RhS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ in
magnetically dilute single crystals of known structure, we have concluded that the probable ground-state vacancy configurations are $\left.|\epsilon\rangle,\left|\epsilon^{2} y\right\rangle, \epsilon^{2} y\right\rangle$, and $\epsilon^{2}\left(\mid>\right.$, respectively. In $D_{2 h}$ symmetry, $\epsilon \equiv \mathrm{d}_{x u}, y \equiv$ $\mathrm{d}_{y z}$, and $0 \equiv \mathrm{~d}_{322}-{ }_{r^{2}}$. The z-axis is perpendicular to the molecular plane, and the y-axis bisects each ligand. The configurational excitation energies predicted from spin-Hamiltonians have been compared with the optical spectra of solutions of the complexes, and observed weak transitions were assigned. The agreement between predicted and observed optical transition energies is satisfactory considering the uncertainty in the spinorbit coupling parameter, ζ, for the complex. From the value of $\overline{r^{-3}}$ and ζ required to fit the hyperfine structure, and the optical transition energies of the cobalt complex, the d-orbitals are considerably less covalent in this complex than in the other three. In the other complexes, the hyperfine structure of the paramagnetic resonance and the optical spectra are best fit with $\overline{r^{-3}}$ and ζ about $0.5-0.6$ of the calculated free ion values.

We find that the strength of the tetragonal field of maleonitriledithiolate dianion as measured by the oneelectron energy $\epsilon \rightarrow \mu$ (where $\mu \equiv \mathrm{d}_{x^{2}-y^{2}}$) is large, this energy difference being estimated in the region of 40,000 $\mathrm{cm} .^{-1}$ for the copper, nickel, and cobalt complexes.

The parameter $g_{x x}$ is reduced in $\mathrm{CHCl}_{3}-\mathrm{DMF}$ glass of $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]$ - below its value in the single crystal. According to the theory this implies a reduction in the parameter c_{1}, or in c_{3}. Since c_{1} refers to the excitation $\left.\left.\left|\epsilon^{2} y\right\rangle \rightarrow \epsilon^{20}\right\rangle\right\rangle$, whereas c_{3} refers to $\left|\epsilon^{2} y\right\rangle \rightarrow$ $\left.\epsilon^{2} \mu\right\rangle$, it is more reasonable that the solvent would affect the energy of the former excitation, which ap-
pears to be increased by the order of 10% in the glass over its value in the single crystal.

The common feature of our interpretation of the electronic configurations of the d^{3}-hole complexes is the proximity of the energies of the configurations $\left|\epsilon^{2} y\right\rangle$ and $\mid \epsilon^{2}(| \rangle$. The splitting is largest in the nickel(III) complex, with $\left|\epsilon^{2} y\right\rangle$ lower (by about $20,000\left(\mathrm{~cm} .^{-1}\right.$), smaller in the cobalt(II) complex $\left.(\sim 3500) \mathrm{cm} .^{-1}\right)$, and the $\left.\left|\epsilon^{20}\right\rangle\right\rangle$ has become the ground-state configuration in the rhodium(II) complex (with $\left|\epsilon^{2} y\right\rangle$ at about $80000 \mathrm{~cm} .^{-1}$). No reliable estimate can be obtained of the energy of the $\left|\epsilon^{2} x\right\rangle$ configuration from the theory, but it may be stated that the energy of this configuration is well above that of $\left|\epsilon^{2} y\right\rangle$, probably by $>15,000$ $\mathrm{cm} .^{-1}$. The large splitting of $\left.\epsilon^{2} y\right\rangle$ and $\left|\epsilon^{2} x\right\rangle$ implies an extensive interaction of the metal $y\rangle$ and $|x\rangle$ orbitals with π-orbitals of the ligands.

Finally, molecular orbital calculations of the groundstate configurations of $\left[\mathrm{NiS}_{4} \mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-}$and $\left[\mathrm{CoS}_{4}-\right.$ $\left.\mathrm{C}_{4}(\mathrm{CN})_{4}\right]^{-2}$ using the extended Hückel theory correctly predict the $\left|\epsilon^{2} y\right\rangle$ configuration. ${ }^{32}$

Acknowledgments,-Support of this work by the National Science Foundation through grants GP-957 and GP-596, the Advanced Research Projects Agency (Department of Defence) through Contract SD-88, and the Milton Fund of Harvard University is gratefully acknowledged. We wish to thank Professor D. H. Templeton and his associates for informing us of the results of their crystal structure determinations prior to publication. We also thank Mr. A. Kwok for engaging in many helpful discussions.
(32) R. Hoffmann and R. H. Holm, unpublished work.
[Contribution from the Chemical Laboratories of The Johns Hopkins University, Baltimore, Maryland 2 1218]

Piperidinate Complexes of Nickel and Copper Mesoporphyrin IX ${ }^{1}$

By Earl W. Baker, Maurice S. Brookhart, and Alsoph H. Corwin
Received February 15, 1964

Abstract

By spectrophotometric techniques, it is shown that copper and nickel mesoporphyrin IX form, respectively, a mono- and a dicomplex with piperidine. The thermodynamic constants for these reactions are reported. The crystal field stabilization energy of the structure of the transition metal ion is correlated with the structure of metalloporplyrin ligand complexes and a relationship of spectral shifts to ligand number is shown.

The formation of complexes of copper and nickel mesoporphyrin with a variety of ligands was reported by Corwin, Whitten, Baker, and Kleinspehn. ${ }^{2}$ Previously, Caughey, Deal, McLees, and Alben ${ }^{3}$ had shown that nickel porphyrins form complexes with pyridine. Miller and Dorough studied the formation of pyridine complexes of several metallo derivatives of tetraphenylporphine and reported equilibrium constants of their formation. ${ }^{4}$

This article reports a spectrophotometric study of the reaction of piperidine with copper and nickel meso-

[^9]porphyrin IX dimethyl ester. The changes in absorption spectra accompanying complex formation may be used to study the reaction quantitatively. Two distinct electronic transitions in the region of 25,000$) \mathrm{cm} .^{-1}$ are observed. The shorter wave length transition is associated with the uncomplexed metalloporphyrin and the longer wave length transition with a state of higher ligancy.

The equilibrium under consideration is
metalloporphyrin $(\mathrm{P})+n$ ligands $(\mathrm{L}) \longrightarrow$ complex (C) (square \longleftrightarrow pyramid or octaltedron)
for which the equilibrium constant, K, is given by

$$
\begin{equation*}
K=\frac{[\mathrm{C}]}{[\mathrm{P}]} \frac{1}{[\mathbf{L}]^{n}} \tag{1}
\end{equation*}
$$

where the quantities in brackets are expressed in units of moles/l. Equation 1 may be rewritten as

[^0]: (1) Alfred P. Sloan Foundation Fellow.
 (2) B. R. McGarvey, J. Phys. Chem., 60, 71 (1956).
 (3) A. H. Maki and B. R. McGarvey, J. Chem. Phys., 29, 31, 35 (1958).
 (4) J. F. Gibson, D. J. F. Ingram, and D. Schonland, Discussions Faraday Soc., 26, 72 (19.58).
 (5) R, Neiman and D. Kivelson, J. Chem, Phys, 35, 156,162 (1961).
 (6) D. Kivelson and R. Neiman, ibid, 35, 149 (1961).
 (7) 1R. Pettersson and T. Vänngård, Arkiv Kemi, 17, 249 (1961).
 (8) F. M. Roberts and W. S. Koski, J. Am. Chem. Soc., 82, 3006 (1960).
 (9) H. R. Gersmann and J. D. Swalen, J. Chem. Phys., 36, 3221 (1962).

[^1]: (10) A. Davison, N. Edelstein, R. F. Holm, and A. H. Maki, Inorg. Chem., 3, 814 (1964), and papers referred to therein.

[^2]: (11) F. Billig, S. I. Shupack, J. H. Waters, R. Williams, and H. B. Gray, J. Am. Chem. Soc, 86, 926 (1964).
 (12) M. H. L. Pryce, Proc. Phys. Soc. (Iondon), A63, 25 (19.50).
 (13) A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, Inorg. Chem., 2, 1227 (1963).
 (14) J. D. Forrester, A. Zalkin, and D. H. Templeton, ibid., 3, 1500, 1507 (1964).

[^3]: (15) D. S. Schonland, Proc. Phys. Soc. (London), 73, 788 (1959)

[^4]: (16) E. H. Carlson and R, D. Spence, J. Chem. Phys., 24, 471 (1956).
 (17) H. B. Gray, R. Williams, 1. Bernal, and E. Billig, J. A m. Chem. Soc., 84, 3596(1962).
 (18) J. Ferguson, J. Chem. Phys., 34, 1609 (1961).

[^5]: (19) (a) T. S. Piper and R. L. Belford, Mol. Phys., 5, 169 (1962); (b) J. Ferguson, R. L. Belford, and T. S. Piper, J. Chem. Phys., 37, 1.569 (1962).
 (20) H. B. Gray and E. Billig, J. A m. Chem. Soc, 85, 2019 (1963).
 (21) J. H. Van Vleck, Phys. Rev., 41, 203 (1932).
 (22) M. Tinkhanl, Proc, Roy. Soc, (London), A236, 535, 749 (1936),
 (23) J. S. Griffith, "The Theory of Transition Metal Ions," Cambridge University Press, London, 1961.

[^6]: (26) A. Abragam and M. H. 1. Pryce. Proc. Roy Soc. (London), A206 164 (1951).

[^7]: (27) R. L. Streever, Phys. Rev. Lettors, 10, 232 (1963).
 (28) K 1.. Trees, Phys. Rev., 92, 303 (1953;
 (29) S. Crondsmit. ibit. $\mathbf{4 3}, 636$ \{19933\}.

[^8]: (31) A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London), A206,

[^9]: (1) Porphyrin Studies. XXXII. Paper XXXI: F. W. Baker, M. 12 uccia, and A. H. Corwin, Anal. Biochem., 8, 512 (1964). This work was supported in part by Research Grant A-2877 from the National Institutes of Health and in part by the Petroleum Research Fund administered by the American Chemical Society. Presented in part at the 146 th National Meeting of the American Chemical Society, Denver, Colo., 1964.
 (2) A. H. Corwin, D. G. Whitten, E. W. Baker, and G. G. Kleinspehn, J. Am. Chem. Soc., 85, 3621 (1963).
 (3) W. S. Caughey, R. M. Deal, B. D. Mcleees, and J. O. Alben, ibid., 84, 1735 (1962).
 (4) J. R. Miller and G. D. Dorough, ibid., 74, 3977 (1952).

